
Kinematics of Wheeled Robots

1

2

 https://www.youtube.com/watch?v=giS41utjlbU

Wheeled Mobile Robots

3

 robot can have one or more wheels that can provide
 steering (directional control)
 power (exert a force against the ground)

 an ideal wheel is
 perfectly round (perimeter 2πr)
 moves in the direction perpendicular to its axis

Wheel

4

Deviations from Ideal

5

Instantaneous Center of Curvature

6

 for smooth rolling motion, all wheels in ground contact must
 follow a circular path about a common axis of revolution

 each wheel must be pointing in its correct direction

 revolve with an angular velocity consistent with the motion of the
robot
 each wheel must revolve at its correct speed

Instantaneous Center of Curvature

7

(a) 3 wheels with roll axes intersecting at a common point (the instantaneous
center of curvature, ICC). (b) No ICC exists. A robot having wheels shown in
(a) can exhibit smooth rolling motion, whereas a robot with wheel arrangement
(b) cannot.

Castor Wheels

8

 provide support but not steering nor propulsion

 two independently driven wheels mounted on a common axis

Differential Drive

9

Differential Drive

10

 angular velocity about the ICC defines the wheel ground
velocities and ℓ

)
2

(

)
2

(

Rv

Rvr

https://opencurriculum.org/5481/circular-motion-linear-and-angular-speed/

distance between ICC and right wheel

distance between ICC and left wheel

Differential Drive

11

 given the wheel ground velocities it is easy to solve for the
radius, R, and angular velocity ω

 interesting cases:
 ℓݒ ൌ ݒ
 ℓݒ ൌ െݒ

vv
vv
vvR

r

r

r

2

Tracked Vehicles

12

 similar to differential drive but relies on ground slip or skid to
change direction
 kinematics poorly determined by motion of treads

http://en.wikipedia.org/wiki/File:Tucker-Kitten-Variants.jpg

Steered Wheels: Bicycle

13

d

r

h

90

ICC

fv

Steered Wheels: Bicycle

14

 important to remember the assumptions in the kinematic
model
 smooth rolling motion in the plane

 does not capture all possible motions
 http://www.youtube.com/watch?v=Cj6ho1-G6tw&NR=1#t=0m25s

Mecanum Wheel

15

 a normal wheel with rollers mounted on the circumference

 https://www.youtube.com/watch?v=O7FbDy-gE70
 https://www.youtube.com/watch?v=mUoftURFsxM
 http://ftp.mi.fu-berlin.de/pub/Rojas/omniwheel/Diegel-Badve-Bright-Potgieter-Tlale.pdf

http://blog.makezine.com/archive/2010/04/3d-printable-mecanum-wheel.html

Mecanum Wheel

16

AndyMark Mecanum wheel specification sheet
http://d1pytrrjwm20z9.cloudfront.net/MecanumWheelSpecSheet.pdf

Forward Kinematics

17

 serial manipulators
 given the joint variables, find the pose of the end-effector

 mobile robot
 given the control variables as a function of time, find the pose of the

robot
 for the differential drive the control variables are often taken to be the

ground velocities of the left and right wheels
 it is important to note that the wheel velocities are needed as functions of time; a

differential drive that moves forward and then turns right ends up in a very
different position than one that turns right then moves forward!

 robot with pose [x y θ]T moving with velocity V in a direction
θ measured relative the x axis of {W}:

Forward Kinematics

18

V

θ

{W}

y
x

 for a robot starting with pose [x0 y0 θ0]T moving with velocity
V(t) in a direction θ(t) :

Forward Kinematics

19

t

t

t

dttt

dtttVyty

dtttVxtx

00

00

00

)()(

))(sin()()(

))(cos()()(

V

θ
V cos θ

V sin θ

 for differential drive:

Forward Kinematics

20

t

r

t

r

t

r

dttvtvt

dtttvtvyty

dtttvtvxtx

00

00

00

))()((1)(

))(sin())()((
2
1)(

))(cos())()((
2
1)(

Sensitivity to Wheel Velocity

21

2.0
100
0)0(

),0(1)(

),0(1)(
2

2

t

tv

tvr

N

N

σ = 0.05

σ = 0.01

Sensitivity to Wheel Velocity

22

L = 0.2;
sigma = 0.05;
figure hold on
for i = 1:1000

vR = 1 + normrnd(0, sigma);
vL = 1 + normrnd(0, sigma);
theta = 0;
x = 0;
y = 0;
dt = 0.1;
for t = 0.1:dt:10

x = x + 0.5 * (vR + vL) * cos(theta) * dt;
y = y + 0.5 * (vR + vL) * sin(theta) * dt;
theta = theta + 1 / L * (vR ‐ vL) * dt;
vR = 1 + normrnd(0, sigma);
vL = 1 + normrnd(0, sigma);

end
plot(x, y, 'b.');

end

Mobile Robot Forward Kinematics

23

 what is the position of the ICC in {W}?

Forward Kinematics : Differential Drive

24

V

θ

{W}

y
x

R

ICC

Forward Kinematics : Differential Drive

25

V

θ

{W}

y
x

R

cos
sin
Ry
Rx

ICC

Forward Kinematics : Differential Drive

26

 assuming smooth rolling
motion at each point in
time the differential drive
is moving in a circular path
centered on the ICC
 thus, for a small interval of

time δt the change in pose
can be computed as a
rotation about the ICC

ICC

R

P(t)

P(t+t)

Forward Kinematics : Differential Drive

27

 computing the rotation
about the ICC
1. translate so that the ICC

moves to the origin of
{W}

2. rotate about the origin of
{W}

3. translate back to the
original ICC

ICC

R

P(t)

P(t+t)

Forward Kinematics : Differential Drive

28

 computing the rotation about the ICC
1. translate so that the ICC moves to the origin of {W}
2. rotate about the origin of {W}
3. translate back to the original ICC

y

x

ICC
ICC

Ry
Rx

ICC

cos
sin

y

x

y

x

ICCy
ICCx

ICC
ICC

y
x

Forward Kinematics : Differential Drive

29

 computing the rotation about the ICC
1. translate so that the ICC moves to the origin of {W}
2. rotate about the origin of {W}
3. translate back to the original ICC

 how much rotation over the time interval?
 angular velocity * elapsed time =

y

x

ICCy
ICCx

tt
tt
)cos()sin(
)sin()cos(

t

Forward Kinematics : Differential Drive

30

 computing the rotation about the ICC
1. translate so that the ICC moves to the origin of {W}
2. rotate about the origin of {W}
3. translate back to the original ICC

y

x

y

x

ICC
ICC

ICCy
ICCx

tt
tt

tty
ttx

)cos()sin(
)sin()cos(

)(
)(

Forward Kinematics : Differential Drive

31

 what about the orientation ?
 just add the rotation for the time interval

 new pose

 which can be written as

)(tt

y

x

y

x

ICC
ICC

ICCy
ICCx

tt
tt

tty
ttx

)cos()sin(
)sin()cos(

)(
)(

ttt)(

t
ICC
ICC

ICCy
ICCx

tt
tt

tt
tty
ttx

y

x

y

x

100
0)cos()sin(
0)sin()cos(

)(
)(
)(

Forward Kinematics: Differential Drive

32

 the previous equation is valid if
 i.e., if the differential drive is not travelling in a straight line

 if then

RL vv

vvv RL

sin
cos

)(
)(
)(

tvy
tvx

tt
tty
ttx

Sensitivity to Wheel Velocity

33

2.0
100
0)0(

),0(1)(

),0(1)(
2

2

t

tv

tvr

N

N

σ = 0.05

σ = 0.01

Sensitivity to Wheel Velocity

34

 given the forward kinematics of the differential drive it is easy
to write a simulation of the motion
 we need a way to draw random numbers from a normal distribution
 in Matlab

 randn(n) returns an n-by-n matrix containing pseudorandom values
drawn from the standard normal distribution

 see mvnrnd for random values from a multivariate normal distribution

Sensitivity to Wheel Velocity

35

POSE = []; % final pose of robot after each trial

sigma = 0.01; % noise standard deviation

L = 0.2; % distance between wheels

dt = 0.1; % time step

TRIALS = 1000; % number of trials

for trial = 1:TRIALS

end

-run each trial-
see next slide

Sensitivity to Wheel Velocity

36

vr = 1; % initial right-wheel velocity

vl = 1; % initial left-wheel velocity

pose = [0; 0; 0]; % initial pose of robot

for t = 0:dt:10

end

POSE = [POSE pose]; % record final pose after trial t

-move the robot one time step -
see next slide

Sensitivity to Wheel Velocity

37

theta = pose(3);
if vr == vl

pose = pose + [vr * cos(theta) * dt;
vr * sin(theta) * dt;
0];

else
omega = (vr – vl) / L;
R = (L / 2) * (vr + vl) / (vr – vl);
ICC = pose + [-R * sin(theta);

R * cos(theta);
0];

pose = rz(omega * dt) * (pose – ICC) + ICC +
[0; 0; omega * dt];

end
vr = 1 + sigma * randn(1);
vl = 1 + sigma * randn(1);

